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Preface 

The IMPROSA project for the Danish Council for Strategic Research aims at ‘Improving Road Safety – De-
veloping a Basis for Socio-Economic Prioritising of Road Safety Measures’. The Institute of Transport Eco-
nomics (TØI) has participated in the project as an advisor on statistical and econometric modelling.  

The present report is a slightly amended version of TØI working paper 50268, dated 11 December 2012. Its 
aim is to gather and present relevant advice for the econometric practitioner working with disaggregate or  
meso-aggregate accident data.  

The appendices are all excerpts from the author’s doctoral dissertation (TØI report 457/1999). 
Thanks are due to Marc Gaudry for his insightful comments on a draft version of the report, and to 

Michael W. J. Sørensen for his Danish language laundering. 
The project manager at TØI has been Senior Research Economist Lasse Fridstrøm. He has also authored 

the report. The quality assurance at TØI has been assumed by Chief Research Officer Rune Elvik. The final 
editing of this report was done by Trude Rømming. The front-page photo, entitled ‘Méthode poisson-
klingenbergeoise’, was taken by Sissel H. Klingenberg.  

Oslo, March 2015 
Institute of Transport Economics 

Gunnar Lindberg Rune Elvik 
Managing Director Chief Research Officer 





Contents 

Summary 
Resumé 
1 Introduction and overview .......................................................................... 1 
2 Keep track of your unit of analysis .............................................................. 2 
3 Exploit the information inherent in the inner logic of casualty counts ..... 3 
4 Use econometrically efficient methods ....................................................... 5 
5 Make the analysis as general as possible .................................................... 7 
6 Measure exposure ....................................................................................... 8 
7 Preserve high levels of measurement .......................................................... 9 
8 Measure size only once. Make smart decompositions. ............................ 10 
9 Start with simple models, then add detail and sophistication .................. 12 
10 Avoid endogenous right-hand side variables. Draw path diagram .......... 13 
11 Leave left-hand side intact. Do all transformations on right-hand side ... 15 
12 Beware of accident underreporting .......................................................... 16 
13 Don’t worry about multicollinearity .......................................................... 17 
14 Compute the maximal goodness-of-fit ..................................................... 18 
15 Apply casualty subset tests ....................................................................... 19 
16 Concentrate on the systematic part of the variation ................................. 20 
Literature ........................................................................................................... 21 
Appendix A. The Poisson process .................................................................... 23 
Appendix B. The generalized Poisson distribution ......................................... 27 
Appendix C. Specialized goodness-of-fit measures for accident models ........ 30 
Appendix D. Casualty subset tests ................................................................... 32 





Summary: 
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The analyst working with accident count data is fortunate. The inner logic of the data 
is such as to allow for unusually fruitful and efficient statistical methods. These 
opportunities should be exploited. We explain how.  

The nature of accident data 

Accident counts are non-negative integers. And so are victim counts. 

This means that even before we start looking at our data, we know something about 
them. This a priori information is potentially quite valuable, and we should make sure 
that we do not lose it or forget it.  

The implications are twofold. 

First, since accident or victim counts (casualty counts, for short) cannot be negative, 
any model able to predict a negative number of casualties is necessarily leaving 
something to be desired. More precisely, the fact that casualty counts are non-
negative numbers suggests a log-linear rather than a linear model structure. ‘Log-
linear’ essentially means ‘multiplicative’. Risk factors work multiplicatively, not 
additively. The risk function is a product of positive factors. 

Second, any accident number placed between the integers is logically impossible. Thus, 
the set of possible casualty counts is much smaller than the set of real numbers. Any 
model that does not implicitly take account of this, is in a sense more general than 
necessary – in other words more vague, less precise.  

This suggests that casualty counts be analyzed by statistical methods explicitly 
developed for count data, i. e. for non-negative, integer-valued dependent variables. 

The core model for count data analysis is the Poisson regression model. The Poisson 
distribution has the remarkable property that the variance equals the mean. That 
means that, once we have estimated the expected value, we also know what to expect 
in terms of variation around the mean.  

The Poisson distribution can be generalized into the negative binomial distribution. In 
this distribution, the data are subject to overdispersion compared to the pure Poisson 
case, i. e. a variance that exceeds the mean. Most software packages will put out the 
overdispersion parameter as part of its estimation, so you can test whether the pure 
Poisson model holds, or if your data suggest a more general formulation, such as the 
negative binomial distribution.  
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Measure exposure 

By exposure, we mean the amount of activities that expose certain subjects to risk.  
Exposure is likely to be the most crucial explanatory variable in any accident model. 

In many cases, exposure should be modelled as multi-dimensional. The expected 
number of injury accidents may, e. g., depend on passenger car miles travelled, 
freight vehicle miles travelled, bus passenger miles travelled, bicyclist mileage, and 
pedestrian mileage.   

Don’t worry about multicollinearity 

In a regression model, independent variables are always to a smaller or larger degree 
collinear (correlated). Just like in real life. Indeed, the regression model is our tool to 
mimic this reality, in a situation where we cannot perform controlled experiments, 
but must rely on non-experimental data.    

Yet many practitioners and econometricians believe that multicollinearity must or 
should be avoided. Don’t listen to them.  

In fact, collinearity is the very reason why we need multiple regression analysis to 
understand what is going on. It makes absolutely no sense to require that collinearity 
be avoided. 

That said, it is a sad fact that when several relevant variables are collinear, it is hard to 
estimate their respective partial effects. The estimates will be imprecise. But this will 
be reflected in the estimated standard errors, the t-statistics, the p-values, etc. The 
regression output will tell us all there is to say about this. The problem is only as big 
as your reported standard errors.  

Measure size only once. Make smart decompositions. 

There are, fortunately, some tricks available to keep related groups of variables from 
obliterating each other, while also enhancing the ease of interpretation.  

Take the example of vehicle size. In a data set consisting of individual accidents or 
vehicles, one might consider entering vehicle weight, length, height, engine effect, 
number of seats/doors/wheels, etc. They will all be highly correlated. More 
importantly, their coefficients will be hard to interpret, since they all express partial 
effects, conditional on all other variables being held constant.  

The solution is this: enter only one variable related to vehicle size, and measure all 
other variables in relation to this one size variable. For instance, enter the log of weight, 
log of engine power per tonne, log of fuel consumption per horsepower, etc. In this way, 
all three variables are entered in the form of a multiplicative decomposition. All 
coefficients, as well as their sums and differences, will have interesting subject-matter 
interpretations.  

ii Copyright © Institute of Transport Economics, 2015



A Rough Guide 

Draw path diagram to avoid endogeneity 

Bear in mind that the interpretation of any one coefficient in the regression model is 
the partial effect of changes in the corresponding variable, conditional on all other 
explanatory variables being held constant.  

Therefore, it does not serve the purpose to enter two independent variables, of 
which one (X, say) always changes in response to another (Z). In such a case, we say 
that X is endogenous with respect to Z. It does not make sense to measure the 
partial effect of Z, given X, or vice versa, as one would actually do in a model 
including both variables.  

To fix ideas, and keep track of any possible endogeneity present in the model, it is 
highly recommended to draw a causal path diagram before specifying the model, or 
in parallel with it.  

Don’t mess with your dependent variable 

Accident counts have a known distribution: the (generalized) Poisson. This extremely 
valuable piece of information must be safeguarded and exploited. 

Transformed accident counts do not, however, necessarily obey any known statistical 
law. When, e. g., we take the log of an accident count, we no longer know its 
distribution, or variance. In fact, its variance is not even finite (since the log of zero is 
minus infinity).  

Similarly, if we use accident rates (casualties divided by exposure) rather than crude 
accident counts as the dependent variable, we no longer know the distribution or 
variance of the error term.   

Use the crude casualty count as your dependent variable. Do not transform it, as this 
amounts to throwing away valuable statistical information. If you want to constrain 
the accident generating function in a particular way, do all your transformation on 
the right-hand side, i. e. on the independent variables. Then proceed to estimate by 
generalized Poisson maximum likelihood.  

Compute the maximal goodness-of-fit 

Accidents are truly random events, logically unpredictable at the disaggregate level. 
Think of it:  if the single accident were predictable, in terms of its exact time, place, 
and persons involved, then it would not happen. The individual accident is as 
random and unpredictable as the movement of the elementary particle in quantum 
physics.  

Thus, the bad news is that in a statistical accident model, there will always be a 
minimum, inevitable amount of random noise. The random noise component will be 
larger, relative to the systematic part, the smaller is the mean expected number of 
accidents. 

The good news is that, since accidents counts are known to follow the Poisson 
distribution, we can compute the maximally obtainable fit, or the minimal amount of 
unexplained variation. This confers more meaning to the well-known coefficient of 

Copyright © Institute of Transport Economics, 2015 iii 
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determination R2 than in any other econometric application. We can tell how far we 
are from explaining all the variation explainable.  

Apply casualty subset tests 

Casualty sets may be subdivided into subsets. In many cases, accident counter-
measures work because they affect one particular subset of accidents or victims. Or 
some risk factor is relevant only for a particular subset of subjects.  

Suppose, e. g., we find that vehicles belonging to households with a male license 
holder aged 18-25 exhibit an increased injury accident frequency. We naturally 
interpret this as the effect of higher risk among male, young drivers. 

To check whether this interpretation is tenable, we may run the exact same model on 
a smaller subset of casualties, such as ‘male car drivers aged 18-25 involved in an 
injury accident’. If our interpretation is correct, the effect on this casualty subset 
should come out stronger than in the more general (main) model. If not, one must 
conclude that at least part of the relationship found in the main model is spurious.  

Concentrate on the systematic part of the variation 

There is a wide literature on how to specify fanciful and sophisticated structures for 
the random disturbance term of the accident equation. Ignore it. 

Working with accident counts we already have plenty information on the structure of 
the random error. We know that the error terms behave more or less like Poisson or 
negative binomial residuals. This knowledge is automatically taken account of in 
standard maximum likelihood estimation software. 

The juice of an accident equation is in the systematic part, i. e. in the linear combination 
of coefficients and independent variables. It is the systematic part that will tell us 
something about accident causation. You should spend your intellect on specifying 
this combination rather than on the uninformative random error.  

iv Copyright © Institute of Transport Economics, 2015



Resumé: 

Statistisk analyse af færdselsuheld 
En uformel vejleder 

TØI rapport 1403/2015 
Forfatter: Lasse Fridstrøm 

Oslo 2015 35 sider 

Uheldsanalysen er en fascinerende gesjæft. Uheldstallenes iboende natur giver ophav til 
et ualmindelig rigt og træfsikkert arsenal af statistiske metoder. Det gælder bare at 
udnytte dem.  

Uheldstallenes iboende natur 

Antal færdselsuheld er med nødvendighed et ikke-negativt heltal. Det gælder hvad 
enten vi tæller op uheldene i hele kongeriget i løbet af et helt år, eller kun angiver, 
hvor mange uheld én bestemt person var udsat for i sidste uge.   

Når vi skal analysere forekomsten af færdselsuheld, ved vi altså, at vores model for 
dette ikke skal give rum for udfald, der ikke er heltal (0, 1, 2, 3, …). Den skal heller 
ikke kunne give negative udfald.  

Det betyder i realiteten, at sammenhængen mellem uheldstal og forklarende faktorer 
ikke kan have form af en sum. Det forventede uheldstal skal være et produkt af 
positive faktorer.   

Sagt på en anden måde, skal regressionsmodellen ikke være lineær i variablerne, men 
log-lineær. De uafhængige variabler skal som hovedregel være målt på en logaritmisk 
skala.  

Det enkelte færdselsuheld rammer tilfældigt og uforudsigeligt. Om uheldet havde 
været forudsagt, med nøjagtig sted, tid og involverede personer, skulle det slet ikke 
have sket. Således er det logisk umuligt at forudsige det enkelte uheld. Uheldstallene 
er behæftet med en statistisk tilfældighed lige så fundamental som kvantefysikkens 
elementærpartikler. Niels Bohr skulle nok have nikket genkendende. 

Teoretiske udlægninger så vel som erfaring har gjort det tydeligt, at uheldstal som 
hovedregel følger den statistiske Poisson-fordelingen, opkaldt efter den franske mate-
matiker Siméon Denis Poisson. At denne fordeling har praktisk anvendelse i uhelds-
analysen, blev åbenbart med den polsk-russiske matematiker Ladislaus Bortkiewicz’  
bog af 1898, ’De små tals lov’, hvor han fastslog, at antal soldater i den preussiske 
hær som i et givent år bliver dræbt af hestespark, netop følger Poisson-fordelingen.  

Denne sandsynlighedsfordeling har den enestående egenskab, at variansen er lig 
forventningsværdien (middelværdien). Så snart vi har estimered middelværdien, ved 
vi altså også, hvor meget variation vi skal forvente omkring denne værdi.   

Den som hånd i handske specialtilpassede metode for uheldsanalyse er altså Poisson-
regressionsmodellen. Efter at vi har specificeret vores uheldsfunktion, som et produkt af 
en række uafhængige faktorer, estimerer vores software nemt alle de koefficienter vi 
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er interesserede i, gennem såkaldt sandsynlighedsmaksimering, eller tilsvarende. Metoder-
ne håndterer lige så let datamaterialer bestående af store, aggregerede tal, som datasæt 
hvor de fleste subjekter har nul uheld, nogle få har ét, og kun nogle yderst få har 
mere end ét uheld. Sådanne disaggregerede datasæt kan let løbe op i mange hundred 
tusind observationer – personer, husstande, køretøj, vejstrækninger eller vejkryds.     

Kend din observationsenhed 

Det værste mareridt en forsker kan opleve, er måske det, at hun i slutfasen af sit 
projekt bliver i tvivl om, hvad der udgør hendes observationsenheder, eller fra 
hvilken population disse enheder er samplet. Fortolkningen af ethvert resultat kan i 
et sådant tilfælde være uigenkaldeligt kompromitteret.   

Det er en fælde, som uheldsforskeren let kan falde i. Der er nemlig så mange 
muligheder at vælge blandt. Enheden i et uheldsmateriale kan for eksempel være: 

a. Et uheld
b. Et personskadeuheld
c. En tilskadekommen
d. En person gennem en bestemt periode (år/måned/uge/dag/time)
e. En person involveret i et uheld (tilskadekommet eller ej)
f. En chauffør involveret i et (personskade)uheld
g. Et køretøj
h. En køretøjkilometer
i. Et køretøj involveret i et (personskade)uheld
j. En familie/husstand gennem en bestemt periode (år/måned/uge/dag/time)
k. Et geografisk område gennem en bestemt periode (år/måned/uge/dag/time)
l. En vejstrækning gennem en bestemt periode (år/måned/uge/dag/time)
m. Et vejkryds gennem en bestemt periode (år/måned/uge/dag/time)

Enhederne af type a til j er disaggregerede – de udgøres af enkelthændelser eller enkelt-
subjekter. Enhederne k til m er aggregerede – de består af optællinger eller gennemsnit 
indenfor en gruppe.  

Et meget vigtigt point er, at nogle af disse enheder forudsætter, at et uheld har ind-
truffet. Det gælder enhederne a, b, c, e, f og i. Sådanne enheder kan bruges til at 
undersøge, hvorledes skadegraden afhænger af de respektive forklarende variabler. 

Men i studier af risiko eller uheldshyppighed er de nær ved at være ubrugelige. I sådanne 
tilfælde er det nemlig lige så vigtigt at have information om alle de tilfælde, der ikke 
leder til uheld, som at vide noget om de, der gør. Det er jo ved at sammenligne de to 
slags tilfælde, at vi kan lære noget om, hvad der kendetegner det ene, men ikke det 
andet – med andre ord; hvad der forårsager uheld.     

Eksponering – vores vigtigste forklarende variabel 

Med eksponering menes omfanget af den aktivitet, der genererer uheld. I trafiksikker-
hedsanalysen bruger man ofte antal køretøjkilometer som mål på eksponeringen. 
Risikoen defineres som det forventede antal uheld (af en vis type) per enhed ekspone-
ring, f. eks. dødsulykker per køretøjkilometer.  

II Copyright © Transportøkonomisk institutt, 2015 
Denne publikation er værnet i henhold til Åndsverkloven af 1961 



En uformel vejleder 

Ingen statistisk uheldsmodel vil fungere godt uden, at vi har inkluderet et mål på 
eksponeringen. Det er vigtigt at måle denne så nøjagtigt som muligt.  

Eksponeringen kan være flerdimensionel. Uheldene opstår som funktion af hvor lang 
distance som tilbagelægges af henholdsvis personbiler, busser, lastbiler, cyklister, 
motorcyklister og fodgængere.  

Kolinearitet – et indbildt problem 

Mange forskere bilder sig ind, at man i en statistisk regressionsmodel for al del skal 
undgå, at variablerne er kolineære. Det er en gedigen vildfarelse.  

Når man arbejder med ikke-eksperimentelle data, er (multi-)kolinearitet mere reglen 
end undtagelsen. I virkelighedens verden er alle variabler mere eller mindre korrele-
rede (kolineære). Det samme gælder også det lille udsnit af virkeligheden, som ud-
gøres af vores datasæt.  

Regressionsmodellens funktion er netop at efterligne denne virkelighed, og alligevel 
deducere partielle, parvise sammenhænger i en verden, der alt hænger sammen med 
alt. Modellen udskiller – destillerer, så at sige – virkningen af hver enkel variabel, på 
den hypotetiske betingelse, at de øvrige sidder i ro, til trods for at alle i virkeligheden 
har bevæget sig sammen.   

Det har altså slet ingen mening at kræve, at variablerne ikke må være kolineære. Når 
det er sagt, skal det indrømmes, at når to eller flere variabler er stærkt korrelerede, er 
det svært at beregne effekten af hver enkelt. Vores estimater bliver let upræcise. Men 
problemet er ikke større, end hvad der fremgår af computerudskriften. Når to variab-
ler er stærkt korrelerede, vil standardfejlen i hver koefficient blive høj, og p-værdien 
ligeså. Estimeringsprogrammet giver altså besked om, hvor dårlig præcisionen er.  

Vi skal nøjes med kun ét mål på størrelsen 

Der er heldigvis nogle tricks, man kan anvende for at reducere kolineariteten i 
modellens variabler, og samtidig gøre fortolkningen nemmere.  

Lad os antage, at vores datasæt består af individuelle køretøjer. Vi vil måske gerne 
beregne, hvorledes risikoen varierer med køretøjets vægt, længde, bredde, højde, 
motorkraft, acceleration, antal sæder, antal døre, etc. Disse variabler vil selvfølgelig 
være mere eller mindre kolineære.  

Vores råd er at inkludere ét og kun ét mål på størrelse. Alle de øvrige variabler måles 
så i forhold til denne størrelse, eller i forhold til hinanden. I det ovenfor givne 
eksempel kan vi tænke os at specificere uheldshyppigheden som afhængig af;  

(a) m2 grundflade (længde gange bredde), 
(b) vægt (kg) per m2 grundflade,  
(c) motorkraft (kW) per kg vægt,  
(d) antal sæder per m2 og  
(e) antal døre per sæde.  

Om alle variabler er målt på logaritmisk skala, har vi her lavet os en multiplikativ 
dekomposition, hvor den samlede effekt er brudt ned i fem bestanddele, og hvor de 
fem koefficienter har hver deres meningsfyldte fortolkning. Koefficient (a) måler 
effekten af størrelse, når vægt, motorkraft, antal sæder og antal døre ændrer sig 
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proportionalt med bilens grundflade. Koefficient (b) måler effekten af, at bilen bliver 
én procent tungere, uden at blive større. Koefficient (c) måler effekten af, at samme 
bil får en stærkere motor – og dermed hurtigere acceleration. Koefficient (d) måler, 
hvorvidt tosædede biler har lavere uheldshyppighed end lige så store og lige så 
kraftige familievogne, mens koefficient (e) angiver, om risikoen øger eller synker når, 
groft regnet, bagsædepassagerene får deres egne døre.    

Også summene og differencerne mellem koefficienterne har i vores eksempel  
interessante fortolkninger. Koefficient (a) minus (d) måler virkningen af én procent 
større grundflade, vægt og motorydelse, mens antal sæder og døre ikke ændres. 
Koefficient (b) plus (c) angiver effekten af, at vægten går op med én procent og 
motorydelsen med to.  

Bemærk også, at i den model vi her har sat op, er kolineariteten stærkt reduceret. Om 
det er høj korrelation mellem grundflade og vægt, vil den være ringe mellem grund-
flade og vægt per m2. Vores multiplikative dekomposition gør variablerne tilnærmet 
ortogonale, det vil sige ukorrelerede med hinanden.  

Tegn stidiagram for at undgå endogenitet 

Man siger gerne, at hver af koefficienterne i en regressionsmodel måler den isolerede 
effekt af den tilhørende variablen, ceteris paribus, det vil sige ’alt andet lige’. Det er dog 
ikke helt sandt, at alt andet skal være ’lige’: Faktisk er forudsætningen kun, at de 
øvrige forklarende variabler som vi har taget med i regressionen, ikke ændrer sig. 

Det indebærer, at man i regressionsmodellen ikke skal medtage to uafhængige 
variable X og Z, der hænger sådan sammen, at X altid ændrer sig, når Z gør det. Vi 
siger da, at X er endogen i forhold til Z, og det har ringe mening at spørge, hvad 
effekten bliver af en ændring i X, for konstant Z, eller omvendt.  

Om for eksempel X er fartgrænsen og Z er hastigheden, så giver det ikke mening at 
tage dem begge med i deres oprindelige form. Selve hensigten med fartgrænsen er jo 
at få hastigheden ned. Men her spørger vi, hvad er effekten af fartgrænsen, for givet 
hastighed! 

En mulig løsning kunne være at inkludere Z/X i tillæg til X, som i en multiplikativ 
dekomposition. Z/X måler da den relative fartoverskridelsen.    

Hvorledes ved man så, i et givet fald, om X er endogen i forhold til Z? Til dette 
findes der intet facitsvar. Det er et spørgsmål om faglig intuition og om teoretisk og 
empirisk indsigt.  

Ét kneb er alligevel i denne situation til stor hjælp: Tegn et stidiagram, med bokse og 
årsagspile, der du, så godt du formår, beskriver hvorledes du formoder, at de forskel-
lige variabler afhænger af hinanden. Da ser du nemmere, hvilke variabler du skal have 
med, og hvilke du skal lade falde bort.    

Ødelæg ikke den afhængige variablen 

Til forskel fra nær sagt al anden økonometrisk analyse, ved vi, i tilfældet med 
færdselsuheld, noget meget vigtigt om vores restled: De følger, i den perfekt 
specificerede model, Poisson-fordelingen.  
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En uformel vejleder 

Om vi imidlertid transformerer vores afhængige variable – uheldstallene, kan vi ikke 
længere vide, hvilken sandsynlighedsfordeling som gælder. Vi skal derfor bevare 
uheldstallene i deres oprindelige, absolutte form og bruge dem som afhængige 
variabler sådan som de står.  

Om vi i stedet for uheldstallet bruger en form for rate, for eksempel uheld per år eller 
per køretøjkilometer, ja så ved vi øjeblikkelig mindre om modellens fordelings-
egenskaber. Om vi omdanner uheldstallene til logaritmisk skala, så kender vi hverken 
fordelingen eller dens varians. Faktisk er variansen i dette tilfælde uendelig.  

Beregn den maksimale tilpasning 

Så længe vi ved, hvorledes restleddene ser ud i den perfekte model, ja så kan vi også 
regne ud, hvor god tilpasningen til data i bedste fald kan blive. Selv i den bedste og 
mest fuldstændige model vil der forblive en vis mængde uforklarlig variation. Ved at 
sammenligne vores uheldsmodel mod den maksimalt opnåelige tilpasning kan vi få at 
vide, hvor langt vi er fra at forklare alt, der kan forklares.  

Det findes altså i uheldsanalysen en form for facit for den optimale tilpasningen, som 
man i øvrige økonometriske anvendelser kun kan drømme om. 

Tjek for spuriøse sammenhænge gennem delmængdetesten 

Som i enhver anden økonometrisk model risikerer man at estimere såkaldte spuriøse 
(uægte) sammenhænger: Jo flere storke, des flere børn kommer til verden. 

Igen har man, i uheldsanalysen, en speciel mulighed for kontrol. Man kan nemlig gøre 
en delmængdetest.   

Vi har måske opdaget, at køretøj tilhørende husstande med mandlige bilførere i 
alderen 18-20 år har øget skadefrekvens. Vi mistænker at dette skyldes de unge mænds 
kørefærdighed, overmod og/eller holdning til risiko.  

Om så var, skulle der være en endnu kraftigere sammenhæng mellem forekomsten af 
unge mænd i husstanden og den delmængde af uheldene som involverer – netop – mænd 
i alderen 18-20 år. Om vi bruger samme set af uafhængige variabler til at forklare, ikke 
alle typer uheld, men kun denne bestemte delmængde, så skulle vores koefficient-
estimat blive væsentlig større. I modsat fald skal vi konkludere at sammenhængen er – 
i det mindste delvis – spuriøs.  

Som en dobbelttjek kan vi køre samme regressionsmodel på en komplementær del-
mængde: Der skal ikke være signifikant sammenhæng mellem andelen unge mandlige 
førere i husstanden og antallet uheld som ikke involverer unge mænd. Er der det, så er 
sammenhængen spuriøs, og vi skal tro, at der også i vores oprindelige, mere generelle 
model er nogle ugler i mosen.  

Fokuser på den systematiske variation 

Der er en omfangsrig litteratur om, hvorledes man kan specificere de tilfældige rest-
leddenes simultane sandsynlighedsfordeling i en ligning, der forklarer færdselsuheld. 
Men man skal slet ikke bruge tid på dette. 
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Statistisk analyse af færdselsuheld.  

I uheldsanalysen ved vi allerede i udgangspunktet en hel del om restleddsfordelingen 
– mere end på nogen anden arena for statistisk analyse. Vi skal derfor bruge vores tid 
og intellekt, ikke på den uinteressante, tilfældige variation, men på at forstå den langt 
vigtigere, systematiske variation – den som vi specificerer, når vi vælger vores forkla-
rende variabler.  

Det er ud fra denne systematiske variation vi i bedste fald kan trække slutninger om, 
hvad der forårsager uheld.  
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1 Introduction and overview 

The use of econometric models to analyze non-experimental data has been common 
practice in economics for half a century. There are, however, several reasons why this 
method would be at least as well suited for accident analysis as it is for economics. 

Road accidents occur as a result of a potentially very large number of (causal) factors 
exerting their influence at the same location and time. To separate out and estimate 
the partial influence of any one factor, multivariate statistical methods are obviously 
called for.  

Accidents are unwanted events, frequently even very traumatizing ones. To a large 
extent, this fact serves to preclude the use of perfectly controlled experiments as a 
means of gaining insights into the causal relationships behind the accident generating 
process.  

There is, however, an abundance of non-experimental data available, in the form of 
road accident statistics and data sets covering a large number of different geographic 
or socio-economic units. The inner logic of accident data is such as to allow for 
unusually fruitful and efficient statistical methods. These opportunities should be 
exploited. We explain how.  

In essence, our advice consists of the following:       Page 
2 Keep track of your unit of analysis ............................................................................. 2 
3 Exploit the information inherent in the inner logic of casualty counts................. 3 
4 Use econometrically efficient methods ...................................................................... 5 
5 Make the analysis as general as possible ..................................................................... 7 
6 Measure exposure .......................................................................................................... 8 
7 Preserve high levels of measurement ......................................................................... 9 
8 Measure size only once. Make smart decompositions. .......................................... 10 
9 Start with simple models, then add detail and sophistication ............................... 12 
10 Avoid endogenous right-hand side variables. Draw path diagram ...................... 13 
11 Leave left-hand side intact. Do all transformations on right-hand side .............. 15 
12 Beware of accident underreporting ........................................................................... 16 
13 Don’t worry about multicollinearity ......................................................................... 17 
14 Compute the maximal goodness-of-fit ..................................................................... 18 
15 Apply casualty subset tests ......................................................................................... 19 
16 Concentrate on the systematic part of the variation .............................................. 20 
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Disaggregate Accident Frequency and Risk Modelling.   
 

2 Keep track of your unit of analysis 

Just about the worst nightmare that can occur to a researcher, is when she, as she is 
approaching the end of the project, discovers that the data set which she has been 
using, consists of differing, i. e. incommensurable, units of analysis. Or, even worse, 
that she doesn’t really know what exactly defines her unit of analysis, nor from which 
population the sample has been drawn. 

To fix ideas, let us list a few units of analysis possible. 
a. An accident 
b. An injury accident 
c. An accident victim 
d. A person (in a given year/month/day) 
e. A person involved in an (injury) accident 
f. A driver involved in an (injury) accident 
g. A vehicle 
h. A vehicle kilometre 
i. A vehicle involved in an (injury) accident 
j. A household/family (in a given year/month/day) 
k. A geographic area (in a given year/month/day) 
l. A road link (in a given year/month/day) 
m. An intersection (in a given year/month/day) 

While units a through j are disaggregate, i. e. consist of single events or decision 
makers, units k, l and m are (meso)aggregate, i. e. they are typically characterized by 
counts or averages of single events, individuals, households, vehicles, vehicle kilometres, 
or similar.   

At his point it is worth noting that some of these units already presuppose that an 
accident has happened. This is true of units a, b, c, e, f and i. Such units aren’t very 
useful in the study of accident frequency, for the simple reason that they are subject, 
if not to self-selection (since accidents are not chosen1), to a rather similar lop-
sidedness, in that all those ‘cases’ where no accident occurs, fail to enter the data set. 
However, if we want to study the causation of accidents or risk, it is just as important 
to have information on the ‘no accident’ cases as on those cases which do lead to 
accidents. It is precisely by studying the differences between these two types of cases 
that we can hope to draw inferences about accident causation.      

 

1 If the event results from a deliberate action, most countries would classify it as suicide or crime, not 
as an accident.  
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A Rough Guide 

3 Exploit the information inherent in the inner 
logic of casualty counts 

Accident counts are non-negative integers. And so are victim counts.  

This means that even before we start looking at our data, we know something about 
them. This a priori information is potentially quite valuable, and we should make sure 
that we do not lose it (or forget it) along the road.  

What are the implications? They are twofold. 

First, since accident or victim counts (casualty counts, for short) cannot be negative, 
any model able to predict a negative number of casualties is necessarily leaving 
something to be desired. There must be something wrong with the mathematical 
structure of that model. More precisely, the fact that casualty counts are non-negative 
numbers suggests a log-linear rather than a linear model structure. The antilog 
(exponential function) of zero is 1, while the antilog of minus infinity is zero. Thus, 
by taking the antilog we convert a range between minus infinity and infinity into a 
range between zero and infinity. Just what we need. 

‘Log-linear’ essentially means ‘multiplicative’. Taking the antilog converts addition to 
multiplication. The risk function is a product. Risk factors work multiplicatively, not 
additively. 

In mathematical notation, the ‘canonical’ form of an accident equation would be  

(1) ∏=∑=
i

xx
tr

triii trii ee ββω  

or, equivalently,  

(2) ( ) tri
i

itr xln ∑= βω  

Here, trω could be interpreted as the expected number of accidents or victims for unit 
(t,r), where, in general, the index t could stand for time, while r represents the cross-
sectional dimension (individual, vehicle, road link, region, or similar). The x’s are 
independent variables and the β’s are parameters to be estimated.    

Second, there is no such thing as 1.2 accidents. Or 3.14 victims. Or 345.73. Any 
accident count placed between the integers is logically impossible. Thus, the set of 
possible casualty counts is much, much smaller than the set of real numbers. Any 
model that does not implicitly take account of this, is – in a sense – more general 
than necessary.  In other words, more vague – less precise.  

This suggests that (smaller2) casualty counts should preferably be analyzed by 
statistical methods explicitly developed for count data, i. e. for non-negative, integer-
valued dependent variables.  

2 When working with large accident counts, the distinction between integer and real-valued numbers 
becomes less important.  
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Disaggregate Accident Frequency and Risk Modelling.   
 

But make no mistake. All this does not mean that the expected value ( trω ) is also an 
integer. The accident model makes use of integer valued observations in order to 
estimate expected values that could be any positive real number (confer Figure 1 in the 
next section).  

An analogy is the logit probability model, whereby one typically estimates probabilities 
between 0 and 1, using data consisting of only binary observations (0 or 1).  
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4 Use econometrically efficient methods 

There is, luckily, an array of count data methods available. Even more luckily, it can 
be argued, empirically as well as theoretically, that these methods place the econo-
metrician working with accident data in a uniquely privileged position. Unlike almost 
any other field of application, the econometrician working with accident counts will 
have excellent a priori information on the shape of his error distribution. This is, 
again, a mass of information which must be safeguarded and exploited for the 
purpose of a maximally efficient analysis.  

The core model for count data analysis is the Poisson model3. According to this 
model, the probability that there will be exactly m events in unit (t,r) can be written  

(3) [ ]
!m
emyP

trm
tr

tr

ωω −⋅
== , 

where the random variable try  is the observed number of events, with mean trω . 

In Figure 1 we show three different Poisson distribution, with expected values 0.5, 
1.5 and 5.5, respectively.  

 
Figure 1. Histograms of the Poisson distributions with means 0.5, 1.5 and 5.5. 

 

The distribution is more skewed (asymmetric) the lower is the mean. In the left-most 
case, where the mean is one half, the most frequent outcome is 0 (zero). 

3 Developed by the French mathematician Siméon Denis Poisson (1781-1840), the Poisson model 
was long regarded as a mostly theoretical exercise in mathematical probability. It was only with the 
discovery made by the Russian-Polish researcher Ladislaus Bortkiewicz, a few generations later, that 
its enormous empirical applicability came to light. Bortkiewicz found that the number of soldiers in a 
Prussian cavalry corps that are killed by horse kick during a given year followed the Poisson 
distribution almost exactly. He published his results in his 1898 book ‘The law of small numbers’ – a 
provocative title since almost all statistical analysis up until then had been based on Bernoulli’s 
celebrated law of large numbers and on the large sample theory emanating from the equally prestigious 
central limit theorem of Gauss/Laplace.  
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Disaggregate Accident Frequency and Risk Modelling. 

As the mean increases, the Poisson converges fast to the normal (Gaussian) 
distribution. One notes that, already when the mean is 5.5, the histogram is almost 
perfectly bell-shaped.  

The Poisson distribution has the remarkable property that 

[ ] [ ]trtrtr yyE var==ω . 

The variance equals the mean. Hence, once we have estimated the expected value, we 
also know what to expect in terms of variation around that mean. We can compute 
the minimum expectable random noise or, by subtracting it from the total variation, 
the maximally explicable variation (see section 14 below).  

Strictly speaking, this is true only if the expected value is known. But even the 
simplest method of estimation will usually provide a sufficiently accurate (set of) 
estimate(s) for all practical purposes. 

Various software packages are available that would estimate the parameters of 
equation (1) by means of maximum likelihood methods or similar. These methods 
are efficient4, in small as well as in large samples, and allow us to test a wide range of 
simple and/or composite hypotheses on the model parameters, using all the available 
information. The likelihood ratio test is particularly useful.  

It gets even better…. 

4 I. e., their precision cannot be improved. 
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5 Make the analysis as general as possible 

The Poisson model, as derived by Poisson (1837, 1841), results from an apparently 
restrictive set of assumptions concerning the process leading up to an accident 
(Appendix A). In essence, it is assumed that accidents result from a random process 
governed by a constant intensity, and that all events are probabilistically independent, 
i. e. the probability of another event does not depend on previous occurrences. 
History does not matter. 

Fortunately, this apparently restrictive model can be generalized in a number of 
useful directions: 

a. The intensity may vary continuously over time. 
b. The sum of independent Poisson variates is itself Poisson distributed, 

meaning that we may aggregate arbitrarily small time intervals (milliseconds) 
into one larger time unit (hour, day, month, year) without violating the 
Poisson assumption.   

c. The log of the Poisson parameter can be specified as a linear regression 
(equation 2), so as to vary between units. 

d. ‘Linear’ means ‘linear-in-parameters’. There is nothing preventing us from 
including non-linear variables, in the form, e. g., of roots, logarithms, variable 
products (interaction terms), power functions, polynomials, or combinations 
thereof.  

e. Exposure5 could be one of the independent variables – or several, if exposure 
is multidimensional. If the exposure parameter is set to one, we are essentially 
estimating a risk function. A more general model is estimated if the exposure 
parameter is allowed to vary. Risk can be computed as the expected number 
of casualties divided by exposure.   

f. To account for heterogeneity or lack of independence, the Poisson parameter 
may itself be specified as random, leading to a compound Poisson distribution. If 
we imagine that trω  is drawn from a gamma distribution, the resulting 
compound distribution is the negative binomial (also referred to as generalized 
Poisson – see Appendix B).  

Taken together, this means that we are perfectly justified in assuming that accident 
counts follow the (generalized) Poisson distribution, even when the counts are too 
aggregate to assume a constant accident intensity.  

Moreover, the negative binomial generalization allows us to treat events that are 
probably not independent, like accident victims. Here, we must expect overdispersion 
compared to the pure Poisson case, i. e. a variance that exceeds the mean. Most 
software packages will put out the overdispersion parameter as part of its estimation.  

 

5 See Section 6. 
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6 Measure exposure 

By exposure, we mean the amount of activities that expose certain subjects to risk. 
Exposure is likely to be the most important explanatory variable in any accident 
model. Without a measure of exposure, the fit will be bad, the noise component large, 
and the coefficient estimates of other explanatory variable rather imprecise or biased.  

Exposure could be measured in various ways, depending on the unit of analysis. If 
the unit is an individual or a household, we ideally would want to include the number 
of kilometres travelled, preferably by mode. If the unit is a vehicle, we want to use 
vehicle kilometres. If the unit is a region or a road link in a certain period, again we 
would use vehicle kilometres or AADT (average annual daily traffic), the latter 
possibly multiplied by the length of the road link. 

To the extent that the analyst can choose between different data sets, with varying 
units of observation, access to exposure measures becomes a crucial argument.  

For instance, a data set of vehicles whose odometers have been recorded at regular 
intervals could prove superior to data sets consisting of individuals or households 
with unknown travel history. An analysis based on vehicle data could provide highly 
interesting information on the risk associated with different vehicle models, vehicle 
age, and/or model years.  

Moreover, if the vehicle records can be linked to owner or household characteristics, 
this approach may even shed light on the risk associated with the households 
members’ personal characteristics. One set of independent variables could be like this: 

i. log of increase in odometer reading since year 
ii. log of (vehicle age (months) + 1) 
iii. vehicle age  
iv. vehicle age squared  
v. log of vehicle weight 
vi. log of engine effect per ton of vehicle weight 
vii. household size (number of persons above 18) 
viii. driver’s licenses per household member above 18 
ix. average driver’s license seniority  
x. share of license holders below 25 
xi. share of which are below 20 
xii. number of children below 18 
xiii. owners’ gender (dummy)  
xiv. gender of youngest license holder (dummy) 
xv. number of household members with a criminal record 
xvi. log of household income 
xvii. highest level of education in household 
xviii. residential degree of urbanization 
xix. regional dummies  
xx. type of insurance (collision coverage? Bonus/malus?) 
xxi. number of cars in the household 
xxii. any other variable of interest….  
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7 Preserve high levels of measurement  

Variables may be measured at the nominal, ordinal, interval or ratio level. There is 
more information in a ratio level measurement than at the interval level, which in 
turn is better than the ordinal level, and so on. Dummies are nominal level variables. 
Do not throw away the information contained in a ratio or interval level 
measurement, by converting the variable into a set of dummies! 

Take the example of age (of a person, vehicle, license, etc). Many researchers make 
the curious choice of entering dummies for various age groups rather age itself. True, 
in this way one does not have to assume a particular curvature for the age effect. But 
by entering, e. g., a 5th degree polynomial in age, the age profile can take almost any 
shape, while requiring no more degrees of freedom than six age groups, and 
preserving all the information contained in the ratio level measurement! 

In the specification suggested above, age (items ii through iv) is entered as a 3rd 
degree polynomial, since log(x) is essentially equivalent to an exponent of 0.6 Even 
exponents like –1 or ½ can be used, if deemed necessary in order to capture the true 
curvature of a relationship.  

 

6 The Box-Cox transformation (Box and Cox 1964) is defined by  

 ( ) ( )
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The parameter λ is generally referred to as the Box-Cox parameter. Different values of this parameter 
correspond to different curvatures or functional forms for the  transformation. For instance, λ  = 1 
yields a linear relation,  λ = 0.5 a square root law, λ  = 2 a quadratic function, and λ  = 3 a cubic 
function, while λ  = 0 and λ = −1  correspond to the logarithmic and reciprocal (hyperbolic) 
functional forms, respectively. A most remarkable property of the Box-Cox transformation is the fact 
that it is continuous and differentiable even at λ  = 0. It is, however, undefined for negative x. 
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8 Measure size only once. Make smart 
decompositions. 

In a regression model, independent variables are always to a smaller or larger degree 
collinear (correlated). Just like in real life. Indeed, the regression model is our tool to 
mimic this reality, in a situation where we cannot perform experiments, but must rely 
on non-experimental data.    

Yet, there are some tricks available to keep related groups of variables from killing 
each other, thereby enhancing the ease of interpretation.  

Take the example of vehicle size. One might consider entering weight, length, height, 
engine effect, fuel consumption, number of seats/doors/wheels, etc. They will all be 
highly correlated. More importantly, their coefficients will be hard to interpret, since 
they all express partial effects, conditional on all other variables being held constant. 
What is, e. g., the meaning of the length coefficient, given weight, height, engine 
effect, etc.? The effect of making a car skinnier?  

The solution is this: Enter only one variable describing vehicle size, and measure all 
other variables in relation to this one variable. For instance, enter log7 of weight (w), 
log of engine power (p) per ton, log of fuel consumption (f) per horsepower, etc. In 
this way, all three variables are entered in the form of a multiplicative decomposition:  

(4) ( ) ....)ln()ln()ln(ln +++= pfwpw fpw βββω ,  

The weight variable will capture the effect of size per se, the horsepower variable 
captures the effect of putting a stronger engine into the same vehicle, while the fuel 
variable captures the effect of a less energy efficient, but otherwise equivalent engine.  

The sums and differences between these coefficients will also have interesting 
interpretations. For instance, the effect of increased weight, for a vehicle with given 
engine power, is measured by pw ββ − , and the effect of a one per cent weight 
increase combined with a two per cent power increase and a two per cent higher fuel 
consumption is given by pw ββ + .  

A most important multiplicative decomposition is this: accidents = risk x exposure.  

Another one is this: fatalities = injuries x deaths per injury (mortality) = accidents x 
injuries per accident (morbidity) x mortality = exposure x risk x morbidity x 
mortality.  

To be able to disentangle all of these effects, one needs data on accidents of all 
degrees of severity, including property damage only (PDO) accidents. This is so 
because, typically, the same accident countermeasures that reduce fatalities, also serve 
to diminish the frequency of injury accidents, shifting some of these into the PDO 
category. Increased seat belt use, for instance, while obviously reducing the number 
of fatalities, shifting some of these cases into injury accidents, also has the effect of 

7 Confer end of section 11 below. 
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reducing many injury accidents to material damage accidents. The latter effect is 
likely to be much larger than the former, as measured by the absolute number of cases, 
and it is impossible to tell a priori which effect will be larger in relative terms. To avoid 
misinterpretations of a change in injury accident frequency, data on PDO accidents 
would be essential.   
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9 Start with simple models, then add detail 
and sophistication 

The simplest possible accident model is this:  

(5) ( ) )ln(ln 10 trtr x+= βω ,  

or  

(6) 1
0

trtr xeβω = , 

where 1trx is some measure of exposure. The expected number of accidents is just 
proportional to the exposure,  0βe being the proportionality constant. Here, trivially, 
the risk is given by  

(7) .0

1

βω e
xtr

tr =  

Now, if we want to relax the assumption of strict proportionality, which, by (8), is 
tantamount to constant risk, we estimate    

(8) ( ) )ln(ln 110 trtr xββω += ,  

corresponding to  

(9)  .10
1

ββω trtr xe=  

Here, 1β is the elasticity of accident frequency with respect to exposure.  

In this model, the risk is given by 

(10) .1
1

1

10 −= ββω
tr

tr

tr xe
x

 

In most models, the accident frequency elasticity will come out somewhere between 
0.5 and 1, implying a risk elasticity between –0.5 and 0:  

(11) 015.0 1 <−<− β .  

If the accident frequency is less than proportional to exposure, it means that risk is a 
decreasing function of exposure.  

Having gotten this far, we are ready to start adding more variables of interest. But…  
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10  Avoid endogenous right-hand side 
variables. Draw path diagram 

Bear in mind that the interpretation of any one coefficient in the regression model is 
the partial effect if changes in the corresponding variable, conditional on all other 
variables being held constant.  

Take the example of education level (variable xvii listed in section 6 above). 
Obviously, if income (variable xvi) is also entered into the model, the education 
coefficient will measure the effect of higher education, given that it does not affect 
income! How interesting is that? A major motivation for, and effect of, higher 
education is to obtain better paid jobs. Here, income is clearly endogenous with 
respect to the education variable.  

To avoid this problem, one would either have to drop one of the two variables, or 
define the income variable as ‘income relative to mean income among persons with a 
similar (level of) education’, much like the idea behind multiplicative decompositions. 

To fix ideas, and keep track of any possible endogeneity present in the model, it is 
highly recommended to draw a causal path diagram before specifying the model, or 
in parallel with it.  

As a second and simpler example, assume that we want to estimate how lowering the 
speed limit on a given road link would affect the monthly injury accident frequency – 
the accident rate, for short. We imagine that the accident rate depends on the road 
geometry, the degree of police surveillance, the traffic flow, the average actual speed, 
and the speed limit. When we set out to draw a path diagram, we quickly discover 
that at least two of these variables – actual speed and traffic volume – are to some 
degree endogenous. It is are reasonable to postulate that there will be arrows into 
these two ‘independent’ variables from the remaining three (Figure 2).     

Obviously, it would make no sense to include actual speed in the model, as this 
would amount to asking: What are the effects of the speed limit, the police 
surveillance and the road geometry, given that the actual speed is kept constant?    

 

 
Figure 2. Partial causal path diagram for the effect of speed limits on the 
monthly accident frequency on a given road link. Source: Fridstrøm (1992). 
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How to handle the traffic flow variable is, in this example, a bit more tricky. In a 
network where motorists have a route choice, the traffic flow will be positively 
related to the speed limits, since drivers tend to prefer faster roads to slower ones. 
This makes the traffic flow variable endogenous and speaks in favour of dropping it 
from our one-equation model.  

But the traffic flow will depend on a host of other variables as well – economic, 
demographic and geographic, factors which one might want to control for. The 
speed limit may, in this context, be thought to have only a marginal effect. To take 
full account of these relationships, a richer and more complex, multi-equation 
econometric model may be called for.  
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11  Leave left-hand side intact. Do all 
transformations on right-hand side 

Accident counts have a known distribution: the (generalized) Poisson. This extremely 
valuable piece of information must be safeguarded and exploited. 

Transformed accident counts do not, however, necessarily obey any known statistical 
law. When, e. g., we take the log of an accident count, we no longer know its 
distribution, or variance. In fact, its variance is not even finite (since the log of zero is 
minus infinity).  

Similarly, if we use accident rates (casualties divided by exposure) rather than crude 
accident counts as the dependent variable, we no longer know the distribution or 
variance of the error term.   

In short, transformed accident data present all kinds of challenges related to 
heteroskedasticity and estimation efficiency. These problems are avoided if we use 
the casualties themselves as dependent variable. True, raw accident data are 
heteroskedastic, too – but in a known way. The straightforward maximum likelihood 
method as applied to a (generalized) Poisson model implicitly accounts for 
heteroskedasticity in an optimal manner. We need not worry about it.    

So our strong advice is this: Do not transform the left-hand side variable in an 
accident equation. It amounts to throwing away valuable statistical information. If 
you want to constrain the accident generating function in a particular way, do all your 
transformation on the right-hand side, i. e. on the independent variables. Then 
proceed to estimate by generalized Poisson maximum likelihood.  

When you do specify the right-hand side of your equation, be aware that most 
software packages for maximum likelihood (generalized) Poisson estimation will 
implicitly assume that data are entered in a form compatible with   

(2) ( ) tri
i

itr xln ∑= βω  

i.e. the right-hand side is a linear combination. This means that if we want exposure (or 
any other independent variable) to be multiplicatively related to the casualty count, like 
in equations (7) or (10), we must measure the independent variable on a logarithmic 
scale. The implication of entering a variable trix

 
measured on a linear scale is to assume 

that casualties are exponentially related to trix , i. e. proportional to trii xeβ .   
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12  Beware of accident underreporting 

Official accident statistics, generally based on police records, usually do not include 
property-damage-only (PDO) accidents, and even for injury accidents subject to 
mandatory police reporting, the coverage is notoriously incomplete. More seriously, 
underreporting varies systematically with a number of interesting factors, such as 
accident severity, travel mode, road type, age and gender (Høye et al. 2012: 14-17). 
Accidents involving bicyclists are, as a case in point, massively underreported. 

Meticulous juxtaposition of police and medical records may allow for estimation of a 
reporting incidence function using the so-called capture-recapture method (Janstrup 
et al. 2013a, 2013b, 2014).  

For reasons stated in section 11 above, it is, however, not advisable to ‘correct’ the 
accident counts prior to model estimation, even if we happen to have relevant and 
reliable estimates of reporting incidence at hand. A preferable solution would be to 
include these factors as explanatory variables in the equation.  

Underreporting may represent a particularly difficult hurdle to accident severity 
analyses. This is so because severity countermeasures may be expected to affect, not 
only the number of fatal and serious injuries, but also the number of injury accidents 
altogether, shifting some of these into the PDO category, and hence beyond the 
scope of official accident statistics.  

Increased seat belt use, for instance, while obviously reducing the number of 
fatalities, shifting some of these cases into the ‘serious injury’ or perhaps even into 
the ‘slight injury’ category, also has the effect of reducing many injury accidents to 
PDO accidents. The latter effect is likely to be much larger than the former, as 
measured by the absolute number of cases, and it is impossible to tell a priori which 
effect will be larger in relative terms. 

To minimize these problems, it is strongly preferable to use data sources including 
accidents of all degrees of severity, down to the PDO level. While police and hospital 
records generally do not include such data, insurance records do. The analyst able to 
access individual insurance policy records, or a convenient aggregation thereof, will 
be in a privileged position, although – obviously – not even these data will be 100 
per cent complete. 
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13  Don’t worry about multicollinearity 

Many practitioners, and even some renowned econometricians, believe that 
multicollinearity must or should be avoided. Don’t listen to them.  

As mentioned in section 8 above, the very idea of regression analysis is to separate 
out – distill, so to speak – the respective partial effects of a host of independent 
variables, which combine to produce an end result – the dependent variable – 
through a complex and non-transparent process. Non-experimental data are 
notoriously interrelated or at least correlated, i. e. collinear. In fact, collinearity is the 
very reason why we need multiple regression analysis to understand what is going 
on8. It makes no sense at all to require that collinearity be avoided. 

That said, it is a sad fact that when several relevant variables are collinear, it is hard to 
estimate their respective partial effects. The estimates will be imprecise. But this will 
be reflected in the estimated standard errors, the t-tests, the p-values, and so on! The 
regression program will tell us all there is to say about this. The problem is only as 
big as your reported standard errors.  

Many practitioners find it tempting, when faced with multicollinearity, to throw out 
some of the variables causing ‘trouble’. Be aware that when you do that, every single 
parameter in the model acquires a new and different interpretation.  

Ideally, the set of independent variables in the model should be determined by the 
hypothetical experiments that you imagine doing: by the variables whose effect you want 
to estimate, and by the variables you want to control for in these experiments 
(Haavelmo 1943, 1944; Pearl 2014). If some of these variables happen to be collinear, 
too bad: Then we cannot extract sufficient information without a more controlled, 
real experiment.  

There is one case where multicollinearity cannot be ignored, namely when collinearity 
is ‘perfect’, meaning that the matrix of independent variables is (near-)singular and 
cannot be inverted. In this case, one of the independent variables can be expressed as 
an exact linear combination of the others and is, hence, redundant in the proper 
meaning of the word. 

 

8 Had all the independent variables been orthogonal to each other, i. e. with zero collinearity, we 
would be able to read off the effect of each variable by simple bivariate correlation or cross-tabulation. 
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14  Compute the maximal goodness-of-fit 

Accidents are truly random events, logically unpredictable at the disaggregate level. 
Think of it:  if the single accident were predictable, in terms of its exact time, place, 
and persons involved, then it would not happen. The individual accident is as 
random as the movement of the elementary particle in quantum physics.  

Thus, the bad news is that in a statistical accident model, there will always be a 
minimum, inevitable amount of random noise. The random noise component will be 
larger, relative to the systematic part, the smaller is the average, expected number of 
accidents. 

The good news is that, since accidents counts are known to follow the Poisson 
distribution, we can compute the maximally obtainable fit, or the minimal amount of 
unexplained variation. Any accident model exhibiting smaller residuals than this will 
be overfitted, i. e. beset by spurious correlation.  

The suggestion is therefore, for any accident model, to compute the maximally 
obtainable fit (P2, say) and relate the standard goodness-of-fit measure to this, i. e. to 
compute R2/P2. It will give the analyst a realistic picture of how much systematic 
variation is explained by his model. If R2/P2 = 1, there is no more variation to 
explain than what is already captured by the model. 

This exercise is particularly useful when working with very small accident counts, as 
in a disaggregate model of individual persons of vehicles. In such models, R2 and P2 
will be quite small numbers. But we can use P2 as a benchmark to judge just how 
badly (or well) the model fits. 9  

 

9 See Appendix C or Fridstrøm et al. (1993, 1995).  

18 Copyright © Transportøkonomisk institutt, 2015
 Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961 

                                                 



A Rough Guide 

15  Apply casualty subset tests 

Casualty sets may be subdivided into subsets. For instance, the set of road traffic 
injury victims in Denmark in 2014 consists of  

1. Males aged under 18 
2. Males 18-25 
3. Males above 25 
4. Females aged under 18 
5. Females 18-25 
6. Females above 25 

or of 
1. Car drivers 
2. Car passengers 
3. Bus passengers 
4. Truck drivers 
5. Pedestrians 
6. Bicyclist 
7. Motorcyclists 
8. Others 

or of any cross-tabulation between these two.  

In many cases, accident countermeasures work because they affect the behaviour of 
one particular road user group. Or some risk factor is relevant only for a particular 
group of people. To the extent, e. g., that vehicle age is important, it should affect car 
drivers and car passengers more than the average road user, while we do not expect 
pedestrian or bicyclist risk to be equally sensitive to vehicle technology. 

It is possible to run accident regression models on just about any subset of casualties. 
This seems particularly useful if the data set consists of vehicles rather than persons 
or household.  

Suppose, e. g., we find that vehicles belonging to households with a male license 
holder aged 18-25 exhibit an increased injury accident frequency. We naturally 
interpret this as the effect of higher risk among male, young drivers. 

To check whether this interpretation is tenable, run the exact same model on a 
smaller subset of casualties, such as ‘males aged 18-25 involved in an injury accident’. 
If our interpretation is correct, the effect on this casualty subset should come out 
stronger than in the more general model.  

The general principles of casualty subset tests are described in Appendix D.  
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16  Concentrate on the systematic part of the 
variation  

Many researchers spend a lot of time inventing fanciful and sophisticated ways to 
specify the structure of the random disturbance term in the accident equation. There 
is a wide literature on this. Please ignore it. 

Working with accident counts we already have plenty information on the structure of 
the random error. We know that the error terms behave more or less like Poisson or 
negative binomial residuals. This knowledge is automatically taken into account in 
the estimation software. 

The juice of an accident equation is in the systematic part, i. e. in the linear 
combination of coefficients and independent variables. It is the systematic part that 
will tell us something about accident causation. You should spend your intellect on 
specifying this combination rather than on the uninformative random error.  
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Appendix A. The Poisson process10 

At first, we shall need a few definitions. 

A stochastic process ( ){ }Tt,tY ∈  is a family of random variables. For each t contained in 
the index set T, ( )tY  is a random variable. The index t is often interpreted as time, in 
which case ( )tY  represents the state of the process at time t. The set of possible 
values of ( )tY  is called the state space of the process. 

A continuous time stochastic process is said to have independent increments if, for all 
choices nt...ttt <<<< 210 , the random variables  

 ( ) ( ) ( ) ( ) ( ) ( )11201 −−−− nn tYtY,...,tYtY,tYtY  

are mutually independent. The process is said to have stationary independent 
increments if, for all Tt,t ∈21  and 0>s , the variables ( ) ( )stYstY +−+ 12 and 

( ) ( )12 tYtY −  have the same distribution.  

The stochastic process ( ){ }0≥t,tY  is said to be a counting process if ( )tY  represents the 
total number of events which have occurred up to time t.  

A particularly important counting process is the Poisson process, defined by 

(13.a) ( ) 00 =Y , 

(13.b) ( ){ }0≥t,tY  has stationary independent increments, 

(13.c) ( )[ ] ( )totYP =≥ 2 , and  

(13.d)  ( )[ ] ( )tottYP +== λ1 , 

where we have made use of the notation ( )to  defined as follows: A function f is said 
to be  if  

(14) 
( ) 0

0
=

→ t
tflim

t
. 

Assumption (13.a) can be seen as an innocuous normalization rule. Assumptions 
(13.b-d) may, in plain language, be interpreted as follows: 

i. The time of recurrence of an event is unaffected by past occurrences. 

ii. The distribution of the number of events depends only on the length of the time 
for which we observe the process. For time intervals (s) of identical lengths, the 
event counts have identical distributions. 

10 This exposition is taken from Fridstrøm (1999), which in turn relies on Ross (1970), Bickel and 
Doksum (1977), and Haight (1967).  

( )to
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iii. The probability of exactly one event, divided by the length of the time period, 
tends towards a stable, positive parameter λ , which is called the rate or intensity of 
the process.  

iv. The chance of any occurrence in a given period goes to 0 as the period shrinks, 
and having only one occurrence becomes far more likely than multiple 
occurrences. For this reason, the Poisson process has been referred to as the law 
of rare events. 

It can be shown (see, e. g., Ross 1970) that, for any process fulfilling these 
conditions, the number of events occurring during any interval of length t (say) has a 
Poisson distribution11 with mean tλ . That is, for all 0≥t,s  

(15) ( ) ( )[ ] ( )
,,,m,

!m
etmsYstYP

tm

210=
⋅

==−+
−λλ . 

It follows that  

(16) ( )[ ] ttYE λ= ,  

i. e. the expected number of events is proportional to the length of the time period 
and to the rate of the process λ . 

A bit simplified, one might say that, for any stationary counting process characterized 
by rare, mutually independent events, the number of events occurring during a time 
period of arbitrary length t follows the Poisson distribution with parameter tλω = , 
λ  being the rate of the process.  

This property is, of course, the reason why the process characterized by assumptions 
(13.a-d) is called a Poisson process.  

Note, however, that the Poisson distribution is in no way part of these same 
assumptions. It is a remarkable, non-trivial mathematical fact that the Poisson 
distribution follows from these assumptions12.   

A well-known example of a process fitting this description is the disintegration of 
radioactive isotopes. The atom decays by emitting neutrons at a given rate. The number 
of atoms disintegrating during a certain period is Poisson distributed. 

It is impossible to tell when a specified atom will decay, but since all atoms are equal 
and the rate of decay is stable, we can predict with fairly large accuracy how many 
atoms will decay during a specified period. This is an example of what Salmon (1984) 
has referred to as an «irreducibly statistical law» – a causal law that includes an 
inevitable, objectively random component. No matter how much we learn about the 
radioactive substance, we would never be able to predict the behaviour of each 
elementary particle. Only their aggregate behaviour is knowable, and this only up to a 
certain (statistical) margin of error. 

Another example of a process fitting the above description is – and this should come 
as no surprise – accident counts.  

11 Named after Poisson (1837, 1841). 
12 Alternatively, one might have taken (13.a-b) and (15) as the set of assumptions and derived (13.c-d) 
as implications. The latter relations are, in other words, both necessary and sufficient conditions for a 
Poisson process (Ross 1970: 13-14).   
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By striking analogy to the decaying radioactive isotope, accidents are also random 
and unpredictable at the micro level. Had the accident been anticipated, it would not 
have happened. Each single accident is, therefore, in a sense unpredictable by 
definition. Thus, even accident counts may seem to be governed by an «irreducibly 
statistical law», according to which single events occur at random intervals, but with 
an almost constant overall frequency in the long run. Although the single event is all 
but impossible to predict, the collection of such events behaves in a perfectly 
predictable way, amenable to description by means of precise mathematical-statistical 
relationships. There is reason to think that this principle applies to traffic accidents as 
it does to quantum physics, or to the (repeated) toss of a die.  

Now, road users and road conditions are not, like the atoms of an isotope, all equal. 
At first sight, therefore, the stationarity part of condition (13.b) above may seem like 
a rather unrealistic assumption as applied to accidents, since it requires that the 
accident rate be constant over time. Even this condition is, however, for all practical 
purposes, an innocuous one. This is so on account of the convenient invariance-under-
summation property of the Poisson distribution: any sum of independent Poisson 
variates is itself Poisson distributed, with parameter equal to the sum of the 
underlying, individual parameters (Hoel et al. 1971: 75-76). Thus all we need to 
assume is that, through some very short time interval (say, a minute, second, or 
fraction thereof), the accident rate can be considered constant, and that events 
occurring during disjoint time intervals are probabilistically independent. In such a 
case the number of events occurring during a given period t (week, month, or year) 
will, indeed, be Poisson distributed. 

In fact, the conditions (13.a-d) may be generalized so as to describe the non-
homogeneous Poisson process, in which the rate of the process may vary continuously over 
time, yet giving rise to Poisson distributed event counts. In the non-homogenous 
Poisson process, the intensity is a function of time (t), and the mean of the resulting 
Poisson variable is found by integration over the range of the intensity function: 

(17) ( )[ ] ( )∫=
t

dsstYE
0

λ . 

The crucial condition left to be fulfilled, in order for the Poisson distribution to 
apply, is the independence part of criterion (13.b). Even this condition is, however, 
less restrictive than it may seem. It does not mean that accident counts should not be 
autocorrelated over time. If the underlying accident intensity ( )tλ  depends on 
systematic explanatory factors showing some degree of stability across consecutive 
time periods (a rather plausible assumption), changes in ( )tλ  will occur slowly and 
gradually, and this «inertia» will be reflected in the observed accident counts as well. 
Only the random part of the observed variation is, according to the Poisson process, 
uncorrelated across time.  
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The fact that an accident has just taken place does not increase the probability of 
another one occurring within the next few seconds, minutes, hours, or days. Nor 
does it reduce it. It may, however, well be that the systematic factors influencing 

( )tλ  in period 10 ttt << , take on similar values in the next period 21 ttt << , thus 
increasing the accident probability in both periods. Such a phenomenon will manifest 
itself in the form of autocorrelated empirical accident counts. It does not contradict 
the assumption of probabilistically independent13 accident counts or events14. 
  

13 We use the term probabilistically independent precisely to avoid confusion with respect to the two 
other meanings of the term «independent», that of functional independence (a uniformly zero partial 
derivative between two variables) and that of independent (exogenous) variables in a regression model.  
14 It might be argued that in certain cases, one cannot rule out the possibility that accident events may 
be probabilistically dependent. This occurs, e. g., (i) when the decision makers (the road users, the 
road authorities, the car manufacturers etc) learn from an accident and change their behaviour so as to 
avoid repetitions, or (ii) when an accident disrupts the traffic flow and thereby increases the risk of 
another one. In the statistical literature, this case is sometimes referred to as «true contagion». Unless, 
however, we are working with very disaggregate accident counts – pertaining to, say, individual 
drivers, vehicles, road links, or intersections – it is unlikely that such effects would represent more 
than an almost negligible deviation from the independence assumption. Moreover, to the extent that 
behaviour is changed in ways affecting risk, this would be reflected in the intensity of the Poisson 
process and – ideally – captured by the systematic factors included in the model. 
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Appendix B. The generalized Poisson 
distribution 

There are thus rather compelling arguments in favour of treating accident counts as a 
sample generated by the Poisson probability law, given by the formula 

(3) [ ]
!m
emyP

trm
tr

tr

ωω −⋅
==  

where trω  denotes the expected number of accidents during period t in area r, while 

try  is the corresponding, actual number of accidents. 

In terms of analysis, the Poisson assumption has a number of useful and interesting 
implications (Fridstrøm et al. 1995). Most importantly, the variance of a Poisson 
variable equals its expected value, both being equal to the Poisson parameter – trω . 
Having estimated the expected value – relying, e. g., on a regression specification like 
(2) above – one also knows how much random variation is to be expected around that 
expected value.  

Assume, for the sake of the argument, that we have somehow acquired complete and 
correct knowledge of all the factors trix  causing systematic variation, and of all their 
coefficients β i . In other words, the expected number of accidents  – i. e., all there is to 
know about the accident generating process – is known. Could we then predict the 
accident number with certainty? The answer is no: there would still be an 
unavoidable amount of purely random variation left, the variance of which would be 
given – precisely – by trω .  The residual variation should never be smaller than this, 
or else one must conclude that part of the purely random variation has been 
misinterpreted as systematic, and erroneously attributed to one or more causal 
factors15.  

In practice one is seldom in the fortunate situation that all risk factors have been 
correctly identified and their coefficients most accurately estimated, so that the 
expected number of accidents is virtually known. A generalization of the Poisson 
probability model, and a sometimes more realistic regression model, is obtained 
when one assumes that the Poisson parameter trω  is itself random, and drawn from 

15 American planners, politicians and scientists deliberately seek to avoid the term «accidents», 
replacing it by «crashes», on the grounds that the former tends to evoke the connotation of sheer 
randomness or bad luck, thereby neglecting the role of responsible, causal agents. In our view, 
however, the connotation of randomness is an entirely relevant one, as there is hardly, within the 
realm of social science, any phenomenon coming closer than road accidents to being truly 
(objectively) random in character. Moreover, randomness does not in any way contradict causation. As 
should be clear from the above discussion, random and systematic (causal) influences coexist. Being 
aware of the random component and of the need to separate it from the systematic part adds to our 
understanding, to our analytical opportunities, and hence ultimately to our knowledge on efficient 
accident countermeasures. We shall therefore continue to use the term «accidents», though definitely 
without implying that no one or nothing is to blame for them.  
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a gamma distribution with shape parameter ξ  (say). In this case the observed number 
of accidents can be shown (Greenwood and Yule 1920, Eggenberger and Pólya 1923, 
Gourieroux et al. 1984 a, b) to follow a negative binomial distribution with expected 
value [ ]E tr trω ϖ=  (say) and variance 

(18) [ ]σ ϖ θϖtr tr tr
2 1= ⋅ + , 

where θ ξ= 1 .  

In the negative binomial distribution, the variance thus generally exceeds the mean. 
In the special case θ = 0 , the gamma distribution is degenerate, and we are back to 
the simple Poisson distribution, in which the variance equals the mean. We shall refer 
to θ  as the «overdispersion parameter», and to models in which θ > 0  as 
«overdispersed». In such a model, the amount of unexplained variation is larger than 
the normal amount of random disturbance in a perfectly specified Poisson model, 
meaning, in fact, that not all the noise is purely random. The model does not explain 
all the systematic variation, but lumps part of it together with the random 
disturbance term. 

The above line of arguments constitutes what could be termed the epistemic 
(subjective) reason for overdispersion. We recognize our lack of (complete) 
knowledge and specify the model accordingly, as when utility is treated as 
«observationally random», i. e. as random as seen from the viewpoint of the analyst (Ben-
Akiva and Lerman 1985: 55-57).  

More fundamentally, ontic16 (objective) overdispersion may exist if the events are not 
probabilistically independent, such as accident victims, of which there may be several 
in a single accident. This fact tends to inflate the variance more than the expected 
value. In victim count models one should therefore never expect zero 
overdispersion.  

This distinction between epistemic and ontic overdispersion is reflected in the two 
alternative derivations first offered for the negative binomial distribution. As noted 
by Feller (1943), quoted by Cameron and Trivedi (1998), these differed in a rather 
interesting way.  

Greenwood and Yule (1920) based their derivation on an assumption of unobserved 
population heterogeneity, adjusting the statistical procedure so as to take explicit account 
of the analyst’s less than perfect knowledge of the true expected values. This 
rationale is clearly epistemic: one does not question the underlying probability model, 
only our ability to learn about it.  

Eggenberger and Pólya (1923), on the other hand, derived the very same distribution 
from an assumption of «true contagion», meaning that the occurrence of one event 
tends to increase the probability of another, as when counting disease cases during an 
epidemic. In this case, one relaxes the independence assumption of the underlying 
stochastic process, based on a belief that such independence is inconsistent with reality. 
This rationale is ontic in nature.  

16 Ontology is the theory of what really exists, i. e. of how the world really is, as opposed to what it 
looks like. Epistemology is the theory of knowledge, i. e. of how and whether we can learn or know 
about the real world. While ontic laws are, in a sense, true by definition, epistemic laws are just 
expressions of what we presently believe. The ontic law may exist even if its epistemic counterpart 
does not (the case of ignorance), or vice versa (the case of false theories).   
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As applied to accident victims, the «true contagion» assumption is obviously more 
realistic than the independence assumption. The fact that there is one victim 
increases the probability of another one.  

When considering certain subsets of victims, however, deviations from the 
independence assumption may in some cases be so small as to be practically 
negligible. For instance, very few accidents involve more than one pedestrian or 
bicyclist. Hence, a good model for pedestrian and/or bicyclist injury victims should 
normally exhibit very little overdispersion. Bus or car accidents, in contrast, often 
involve more than one injury victim. Models explaining bus or car occupant injuries 
will therefore inevitably be overdispersed. 
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Appendix C. Specialized goodness-of-fit 
measures for accident models 

Fridstrøm et al. (1993, 1995) demonstrate how one can construct goodness-of-fit 
measures for accident models, which take account of the fact that casualty counts 
inevitably contain a certain amount of purely random, unexplainable variation. 

Consider the well-known (squared) multiple correlation coefficient   

(19) 
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where trû  are the residuals and y  is the sample average of all casualty counts try .  

If ytr  is Poisson distributed with mean (and variance) trω  (say), conditional on the 
independent variables, then the expected value of 2

tru  is equal to the variance of ytr , 
which in turn equals ω tr  (assuming no specification error). Thus, the total squared 
residual variation will have an expected value, correcting for the degrees of freedom, 
given by  

[ ] ∑ ∑∑ ∑ −
=

t r trt r tr n
knûE ω2 , 

where n is the sample size and k is the number of estimated parameters. 

A consistent (and usually very precise) estimate of ∑ ∑t r trω  is the sum of the fitted 

values ∑ ∑t r trŷ . This means that even in the perfectly specified accident model (in 
which all relevant variables have been included and all parameters have been estimated 
virtually without error), an observable upper bound on the coefficient of determination 

2R  is given by  

(20)   
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ŷ
n

kn

P 2
2 1 . 

Given this bound17, an intuitively appealing procedure would be to always judge the 
explanatory power of an accident model in relation to the maximally obtainable 
goodness-of-fit, by computing 

17 We refer to 2P as a «bound» not in the strict mathematical sense, but in the sense of an optimal 
(target) value – a prescriptive benchmark, so to speak. As noted below, an overfitted model would 
exhibit 22 PR > .  
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(21) 
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Note that this measure differs from (19) only in that the normal amount of pure 
random variation has been subtracted from the total sample variation appearing in 
the denominator. To obtain a relevant measure of the model’s power to explain 
systematic variation, we «purge» the overall sample variance of its inevitable random 
component.  

One might therefore refer to 2
PR  as the coefficient of determination (R square) for systematic 

variation. A model explaining virtually all systematic variation should have an 2
PR  

approaching one. In an overfitted model, we would have 12 >PR .  
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Appendix D. Casualty subset tests 

Omitted variable bias is an important source of error in any econometric study. 
Whenever a regressor is correlated with the collection of explanatory variables not 
included in the model, the effect due to the excluded variables tends to be ascribed to 
the included one, inflating (or deflating) the coefficient of the latter. Any statistically 
significant effect found may thus, in principle, be due either (i) to a true causal 
relationship or (ii) to some kind of spurious correlation, or, indeed, to a combination 
of the two. 

The number of factors influencing casualty counts is notoriously quite large. It is 
inconceivable that any econometric model would encompass all of them. Some 
factors are quite general, potentially influencing the frequency of (virtually) all types 
of accidents or victims, while other factors may be assumed to affect only certain 
subsets of casualties. To exploit our a priori knowledge of such relationships we 
introduce the following: 

Definition 1: Casualty subset tests. Let A, B, C and D denote four sets of casualties 
(accidents or victims) such that  

 
(22) ADCBDCDBCB =∪∪∅=∩=∩=∩ and ,  
 
i. e. B, C and D are disjoint, exhaustive subsets of A, not all of them necessarily 
non-empty. Let 

 
(23) ( )Y E yA Ax x≡ , ( )Y E yB Bx x≡ , ( )Y E yC Cx x≡  and ( )Y E yD Dx x≡  

 
denote the expected number of each type of casualties, conditional on a set of 
independent variables [ ]x = x x1 2 .... ' . Also, denote by  
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the partial elasticities of YAx , YBx , YCx , and YDx  with respect to some element xi  
of x. Note that, by definition,  

 
(25) ε ε ε εAi Bi B Ci C Di Ds s s= + +x x x ,  
 
where  
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≡ ≥ 0  and s Y
YD

D

A
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x

x

≡ ≥ 0  
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denote the share of casualties belonging to subsets B, C, and D, respectively. 

 
Suppose that D = ∅ and that we want to test a hypothesis of the form 

 
(27) H Bi Ai Ci1 0+ > > =: ε ε ε   
 
or 
 
(28) CiAiBi:H εεε =<<− 01   
 
in other words that xi  has a larger positive (negative) effect on the number of 
casualties within subset B, a smaller positive (negative) effect on the total number 
of casualties (set A), and a zero effect on casualties of type C. 

 
Let DiCiBiAi ˆ,ˆˆ,ˆ εεεε and,  denote empirical sample estimates corresponding to the 
theoretical elasticities DiCiBiAi ,,, εεεε and , respectively. 

 
The hypothesis H1

+  (or H1
−  ) is said to pass the affirmative casualty subset test as 

applied to B versus A if and only if   

 
(29) )case(in0)Hcase(in0 11

−+ <<>> Hˆˆorˆˆ AiBiAiBi εεεε .  
 
It is said to pass the complement casualty subset test as applied to B versus C  
if and only if  

  
(30) )case(in0)case(in0 11

−+ ≈<≈> HˆˆorHˆˆ CiBiCiBi εεεε .  
 
Alternatively, assume that C = ∅  and consider the hypotheses 

 
(31) DiBi:H εε >>+ 02   
 
or 
 
(32) DiBi:H εε <<− 02   
 
Hypothesis H2

+  (or H2
−  ) is said to pass the converse (opposite) casualty subset 

test as applied to B versus D  if and only if  

 
(33) )Hcase(in0)Hcase(in0 -

2
+
2 DiBiDiBi ˆˆorˆˆ εεεε <<>> .  

 
  

The logic of these tests is illustrated by the following examples.  
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Example 1: Let A denote the set of all road users injured, B the set of car occupants 
injured, C the set of non-occupants injured. D is an empty subset. Also, let xi  denote 
the rate of seat belt non-use. Clearly, in this case one expects hypothesis H1

+  to 
hold. If the total number of road victims goes up as a result of reduced seat belt 
use (increased non-use), one should – ceteris paribus – be able to observe a stronger 
(relative) effect on car occupants (B) than on road injuries in general (A). This is 
the affirmative casualty subset test, confirming the impact of the safety measure by 
narrowing in on its target group.  
 
One should, however, not see any effect of seat belt (non-)use on bicyclist and 
pedestrian injuries (C) – unless, of course, car drivers adapt in the way maintained 
by Peltzman (1975), exposing non-occupants to higher risk. This is the complement 
casualty subset test, comparing the effect on the target group to the effect on its 
complement subset.    

 

Example 2: Let A denote the set of car occupants injured, B the set of car occupants 
injured while wearing a seat belt, and D the set of car occupants injured while not 
wearing a seat belt. C is empty. As in the previous example, let xi  denote the rate 
of seat belt non-use. In this case one expects hypothesis H2

−  to hold: increased 
seat belt non-use should be positively related to the number of non-users injured, 
but negatively related to the number of seat belt users injured, simply because of 
the exposure effects. This is the converse (or opposite) casualty subset test, checking if 
the risk factor in question has the expected converse (opposite) effect on a 
suitably defined subset of the casualties. More seat belt use should – ceteris paribus 
– mean more seat belt users injured, even if the injury risk is much lower than in 
the non-user group. 

 

At this stage the reader may want to ask what is the point of «testing» such entirely 
trivial relationships. It is this: 

If our seat belt variable does not pass the complement casualty subset test as applied 
to car occupants versus non-occupants, but shows, e. g., a clearly significant, positive 
partial elasticity of non-occupant injuries with respect to seat belt non-use, there is 
reason to suspect omitted variable bias, probably inflating the effect of the seat belt 
variable on its target group (car occupant injuries) as well.  

An even stronger indication of such bias is conveyed if our hypothesis fails to pass 
the converse casualty subset test as applied to seat belt users versus non-users. 

One may note that our casualty subset tests are not set up as formal statistical 
significance tests. Only point estimates are compared, and pragmatic conclusions are 
drawn on the basis of their relative magnitudes. This is so because in most practical 
applications, one would not possess the relevant covariance estimates needed to 
perform, e. g., the asymptotic Wald test. Nor would comparable likelihood statistics 
be available, since casualty subset tests are generally based on separate, identical 
regressions explaining different dependent variables. 

Only when a single elasticity is to be tested against a zero (or constant) alternative 
will we have enough information to perform a significance test.  
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In some cases, however, the zero alternative (in the complement casualty subset test) 
must be regarded as only approximate, such as when a risk or safety factor has a 
diluted effect even outside its main «target group». This will rarely apply to severity 
reducing (or increasing) factors, but quite frequently to accident reducing (or 
increasing) variables, since the latter will have spillover effects to other road user 
groups involved in bipartite or multipartite accidents. For instance, measures to 
reduce the accident risk of young drivers have a primary effect (if any) on this 
particular age group, but presumably also a diluted effect on the average risk 
experienced by other road users. In this case, therefore, one should not expect the 
effect observable within the complement subset to be exactly zero. 
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